Kawitacja w klejach

Kawitacji opisuje wzrost pęcherzyków gazu i pary wodnej w materiał poddawany próżni. W klejach narastanie ubytków powoduje duże odkształcenie materiału, co powoduje rozproszenie energii mechanicznej. Jest nawet istotnym składnikiem energii potrzebnej do pokonania adhezji, zwanej energią adhezji .

Pochodzenie depresji

W kleju podciśnienie powodujące kawitację pochodzi z siły, z jaką pociągasz, aby przerwać przyczepność. Dokładniej, w dwóch klasycznych testach przyczepności:

Przebieg kawitacji

Przebieg kawitacji w klejach jest bezpośrednio związany z reakcją na siłę w teście przylepności sondy , jak wykazano w 1999 roku.

Pochodzenie pierwotnych ubytków

Ubytki powstające w kleju pod napięciem powstają w wyniku zarodków kawitacji: jest to kawitacja niejednorodna (bez niej progi kawitacji byłyby znacznie wyższe). Przyjmuje się, że w klejach są prawdopodobnie dwa rodzaje zarazków:

Początek kawitacji i początkowy wzrost pęcherzyków

Ponieważ pierwotne małe pęcherzyki (zarazki) są małe, otaczające środowisko musi osiągnąć znaczną depresję, zanim zaczną rosnąć: jest to próg kawitacji . Dopóki ich wzrost się nie rozpoczął, mają one bardzo niewielki wpływ na ogólną reakcję mechaniczną folii klejącej: jej początkowa wytrzymałość pozostaje taka, jak elastyczna folia naprężona.

Z drugiej strony po przekroczeniu progu kawitacji zarodki rozwijają się w postaci ubytków. Szybko są znacznie bardziej rozległe niż początkowe zarazki (których typowa wielkość jest rzędu µm). Dlatego są kuliste, o ile nie zbliżają się do ścian. Następnie rosną bocznie i stają się szersze niż grube.

Gdy całkowita objętość wnęk staje się porównywalna z objętością folii klejącej, znacznie zwiększają one jej efektywną objętość, powodując w ten sposób odciążenie wgłębienia. Zjawisko to powoduje zatem zatrzymanie wzrostu siły rozciągającej wywieranej na ten obszar kleju, jak również przemieszczenie ścian. Jest to główne źródło piku siły zarejestrowanego podczas testu przylepności sondy .

Wygląd ścian

Gdy ubytki rosną w bok, ich krawędź ostatecznie zbliża się do sąsiednich ubytków. Odpowiednio spadają gradienty ciśnienia i spowalnia wzrost boczny. Materiał, który pozostaje między sąsiednimi wnękami rozrzedza się i ostatecznie tworzy prawdziwe ściany (widoczne w widoku z góry na animacji u góry strony).

W miarę jak ściany się oddalają, wnęki rozszerzają się pionowo. Kiedy ściany są już uformowane, powstaje zatem prawdziwa dwuwymiarowa pianka, która jest rozciągana w pionie, jak pokazali Lakrout i Creton w 1999 roku.

Odpowiednio, w zapisie testu przylepności sondy obserwuje się plateau naprężenia .

Efekt przyssawki

Wnęki nie są połączone z powietrzem zewnętrznym. Ponieważ klej jest nielotny, w zagłębieniach panuje ciśnienie znacznie niższe niż ciśnienie atmosferyczne, gdy tylko urosną znacznie w porównaniu z ich początkowym rozmiarem (w postaci nasion). Dlatego zewnętrzne ciśnienie atmosferyczne wpływa na siłę, z jaką należy pociągnąć, aby uwolnić klej. To jest efekt przyssawki .

Otwarcie ubytków

W przypadku klejów siła nagle spada na końcu plateau naprężenia i słychać cichy dźwięk. W przypadku bardzo lepkiego płynu (patrz ilustracje obok) jednocześnie obserwuje się otwarcie wnęk, hałas i spadek siły rozciągającej. W ten sposób ta seria eksperymentów ustala interpretację efektu zasysania w bardzo lepkich cieczach i sugeruje, że podobne zjawiska w klejach wynikają również z efektu zasysania i ostatecznego otwarcia wnęk. W przypadku klejów, to końcowe otwarcie niekoniecznie musi wynikać z cyfry, ponieważ klej płynie trudniej.

Uwagi i odniesienia

  1. H. Lakrout, C. Creton, J. of Adhesion 69, 307 (1999), http://www.espci.fr/usr/creton/
  2. C. Gay, L. Leibler, Phys. Obrót silnika. Lett., 82 (1999) 936-939
  3. S. Poivet i in. Europhys. Lett., 62 (2) (2003) 244-250
  4. S. Poivet i in. , Eur. Fiz. J. E 15 (2004) 97-116